If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-34x+14=0
a = 10; b = -34; c = +14;
Δ = b2-4ac
Δ = -342-4·10·14
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{149}}{2*10}=\frac{34-2\sqrt{149}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{149}}{2*10}=\frac{34+2\sqrt{149}}{20} $
| 1+b-7b=1 | | n/36=5/9 | | 2x+4(x-1)=2+4x4 | | 9=5x-624 | | r-833/5=19 | | 26x^2-17x+14=0 | | (y-1)^2=4 | | 4+z-(3+2z)÷6=-Z-3(5-2)÷7 | | 0=-16t^2+960 | | 5x+7=-89-7x5 | | 12x-251=2x-11 | | 6+7b=6+18b | | w/7−4= 1 | | 6b+7b=6+18b | | 2/9x+1/9=-2 | | 22=2(x=8) | | 25+3z=85 | | 10=2x+120 | | 28/g=4 | | 7=21-2u | | 7=21−2u | | x/4-3x/7=12 | | X2+1x-202=0 | | 4/x-4=16/x+2 | | 5+8x=-16+× | | 4/x-4=16/x=2 | | 2x+3×(5x+7)=2×(3+10x) | | 10x(46-4x)=106 | | 1x+(x/2)=15 | | 1x+1/2x=15 | | 4y-14=33 | | -20=5a |